延迟渲染
本文讲述的是KlayGE中使用的延迟渲染方法。
Contents
Deferred Lighting的框架
KlayGE 3.11的例子已经从Deferred Shading改成了更节省带宽的Deferred Lighting。这里先对Deferred Lighting作一个简要的介绍,并假设读者已经了解了Deferred Shading。
Deferred Lighting的渲染架构可以分为三个阶段:
1. for each object { 填充G-Buffer } 2. for each light { Lighting pass } 3. for each object { 执行shading }
与Deferred Shading不同的是,shading(也就是和材质相关)的计算仅仅发生在最后一个阶段。所以,G-Buffer中需要保存的信息得到极大地减小,甚至不再需要MRT。
Lighting pass
Lighting pass在Deferred Lighting框架处于核心地位,在这里我打算先把lighting pass解析清楚。一旦lighting pass表达好了,G-Buffer所需要保存的信息,以及shading pass能得到的信息也都清楚了。
基于物理的BRDF推出了渲染模型总公式:
再有N个光源的情况下,每个像素的光照响应就是
对于Deferred shading来说,每一个shading pass就是执行一个
而对于Deferred lighting来说,公式需要重新整理一下:
由于cdiff是到最后的shading pass才计算,所以在每一个light pass里面,diffuse和specular必须分开才能保证结果正确:
为了把diffuse和specular放入4个通道的buffer中,就只能牺牲specular的颜色,只剩下亮度,同时cspec也简化成一个标量。所以,lighting pass的计算成了:
G-Buffer的分配
在Deferred框架中,不管是Deferred Shading还是Deferred Lighting,G-Buffer的分配都是非常关键的。前面得出的lighting pass公式如下:
从公式可以看出,在light pass里需要的量有n,h,alpha,cspec,lc。因为h = (v + lc) / 2(见基于物理的BRDF),而lc = normalize(l - p)(l是光源位置,p是要计算的点位置),所以最终需要G-Buffer提供的量有:n,p,alpha和cspec。要完整的保存这些量,一共需要8个通道,normal占3个,position占3个,alpha和cspec分别占一个。这样对G-Buffer来说消耗太大了,必须要缩减。
显而易见的是,normal是经过归一化的,只需要保存2个分量。http://aras-p.info/texts/CompactNormalStorage.html比较了多种保存2分量的方法,其中Spheremap transform速度和效果综合起来最佳,Crytek也在用同样的方法,即:
float2 encode(float3 normal) { return normalize(normal.xy) * sqrt(normal.z * 0.5 + 0.5); } float3 decode(float2 n) { float3 normal; normal.z = dot(n, n) * 2 - 1; normal.xy = normalize(n) * sqrt(1 - normal.z * normal.z); return normal; }
下一步是position。实际上像素所在的位置已经提供了x和y,需要保存的仅仅是z。position何以很好地从z和像素位置计算出来。这里保存的是view space的z除以far plane。在lighting pass,pixel shader里拿到像素在view space的位置之后,做这样的计算:
p = view_dir * ((z * far_plane) / view_dir.z);
其中,view_dir是在vertex shader中计算之后传到pixel shader。对于把光源的几何体直接作为光源几何的情况(如果你不熟悉这个,请见下篇),那么view_dir就是顶点乘上world * view矩阵之后的结果。对于用全屏的四边形作为光源几何的情况,view_dir就是把view frustum在far plane上的四个点乘上inverse(projection)矩阵之后的结果。z * far_plane就还原出了该点在view space的z,然后根据相似三角形的定理很容易就能推出这个还原公式。现在,position成功地压缩到了1个通道。
剩下的就是alpha和cspec。如果不需要fresnel,可以直接忽略cspec,留到shading pass再做,这里直接存alpha就可以了。否则,就需要把alpha和cspec放入同一个通道。我用的方法是,floor(cspec * 100)作为整数部分,clamp(alpha, 0, 255) / 256座位小数部分。这样的限制是,alpha取值范围为[0, 256),一般来说够用了。
由此,所有lighting pass需要的信息都被压进4个通道内,G-Buffer只需要1张texture,省去了MRT。
Shading Pass
shading pass需要把前面所有lighting pass积累出来的光照信息和物体本身的材质信息组合起来,得出最后的着色。物体材质中的cspec已经存在G-Buffer,并在lighting pass中计算了,所以shading pass输入的材质有cdiff,cspec,cemit,alpha。别忘了在前面的公式中,specular号需要乘上归一化系数(alpha + 2) / 8。另一方面,在lighting pass的结果里,rgb存的是积累的diffuse,a存的是积累的specular亮度,如果还有计算AO,那么shading所用的公式就是:
如果在G-Buffer和lighting pass因为不考虑fresnel而至保存了alpha,那么shading pass的公式就变成:
Light volume
在Deferred Rendering中,表示一个光源最简单的方法就是一个全屏的四边形。它能让G-Buffer的每一个pixel都参与计算,在pixel shader中才过滤掉多余的像素。虽然可以保证结果正确,但毕竟多余计算太多,效率不高。这里常用的一个优化就是用一个凸的几何形状来表示光源。该几何 形状覆盖的pixel才计算该光源对它的贡献。显而易见的是,spot light用圆锥,point light用球或者立方体,directional light和ambient light用全屏四边形。下图画了一个spot light的volume:
这样的几何体类似于古老的shadow volume技术所用的几何体,所以我把它叫做light volume。但由于light volume保证是凸几何体,在渲染上比shadow volume简单不少。
优化1:视锥检测
有了light volume,就可以把它和视锥做一个相交检测。light volume完全包住了light能覆盖的范围,所以如果一个light volume在视锥之外,这个光源就可以直接忽略。
优化2:Conditional Rendering
D3D10及以上的显卡都支持conditional rendering,基本用法是这样的:
BeginQuery() Draw object with simple shader EndQuery() ... BeginConditionalRendering() Draw object with real shader EndConditionalRendering()
如果第一个Draw没有产生可见的像素,那么第二个Draw就会被忽略。与Occlusion query不同的是,在这个过程中不需要把query的结果返回CPU,流水线不会被打断,效率更高。用这种方法,就可以直接忽略掉不照亮任何一个pixel的光源。
优化3:Stencil Buffer
和shadow volume一样,这里可以用stencil buffer来标记出光源能找到的像素。实际上,在shadow volume上用的优化也可以照搬过来。比如说,双面stencil是最常用的一个方法,在一个pass内就能同时加减正反两面的stencil。同 样,light volume也存在视点进入volume的问题,需要改变depth function,cull mode和back stencil pass。
优化4:Shadowing pass
KlayGE用shadow map渲染阴影。其生成shadow map的过程和普通方法一样,这里就不累赘了。在使用shadow map的时候有两个选择,以前的方法是在lighting pass里计算光照的时候就查询shadow map,同时计算阴影。另一个方法来自Screen space shadow map。在每个lighting pass之前加一个shadowing pass,仅仅查询shadow map和计算阴影本身(结果是个灰度图)。这样的好处是,shadowing可以在更低的分辨率上计算,而不用和lighting pass用同样的分辨率,提高效率。另外,shadowing pass的结果可以像screen space shadow map那样做一次blur,在让lighting pass使用。
Anti-Alias
从Deferred Shading发明的一天起,anti-alias的问题就一直困扰着所有Deferred的方法。虽然很多无良的游戏厂商直接在Deferred Rendering的游戏里不支持AA,但确实AA对提升画面质量很有帮助。
Edge AA
在Deferred的框架里,很自然会想到用Edge AA来处理AA。其过程不外乎:
- 边缘检测,得到每个像素“像边缘的程度”
- 在shader里根据“像边缘的程度”来控制采样坐标
这本身并不是个复杂的过程,尤其是第二步,非常直截了当了,所以这里集中讨论的是如何进行边缘检测。
GPU Gems 2的“Deferred Shading in STALKER”一文提供了一种边缘检测的方法,通过把周围像素的法线差和深度差的和来判断边缘,由e_barrier这个参数来定义阈值和比例,而这个参数和分辨率有关。GPU Gems 3的“Deferred Shading in Tabula Rasa”改进了这个过程,只判断法线差和深度差最大和最小的两组。由于只是局部的相对量而已,这样就做到了和分辨率无关的边缘检测。KlayGE目前用的也是这种方法,得到的边缘如下:
另一个可能用于边缘检测的方法是,前面提到了如何恢复出每个pixel的view space position,每个pixel取得周围4个pixel的位置之后,就可以直接cross得出一个normal,姑且称为screen space normal。如果一个像素是连续的,那么这个normal就会很接近于G-Buffer中保存的normal,否则它们的方向就会差别很大。下图为G- Buffer中的normal:
这是screen space计算出的normal:
把这两个normal做一次dot,小于某个阈值的就认为是边缘,得到:
利用硬件MSAA作边缘检测
前面提到的边缘检测结果虽然不错,但其实都是是参数相关的。能否就用硬件的MSAA来做边缘检测呢?在Shader model 3.0以上的GPU,vertex attribute插值的时候可以选择centroid这个modifier。开启了centroid的attribute,会选择覆盖到的sample 中心来插值,而不是像素中心。所以,同一个属性,如果即有centroid又有不带centroid的版本都传给pixel shader,在pixel shader里面判断两者不一致,就表示这个pixel在边缘上。这样的话,边缘的情况就和硬件MSAA完全一致了。但其实MSAA会过渡判断边缘,所有三角形的边缘都会被认出来,即便只是物体内部的。所以谨慎使用。
能不能就用MSAA?
前面讨论了那么多都是基于Edge的AA。在Deferred Lighting框架下,难道就不能直接用MSAA?可以!这也是Deferred Lighting比Deferred Shading优秀的方面之一。Deferred Shading不能直接MSAA的本质原因是在G-Buffer之后,物体几何信息全部抛弃了。相比Deferred Lighting,在shading pass,物体会被再次渲染一遍,这个时候还是有几何信息的,如果在shading pass打开了MSAA,就可以像Forward shading那样利用硬件MSAA了。唯一不同的是,光照来自于lighting pass的texture,而不是从光源计算。就算硬件MSAA,也只是每个pixel执行一次pixel shader,在按照覆盖情况写入sample的,所以在这里视觉上几乎和Forward shading一样。
展望未来
shading pass再次渲染物体的改进
Deferred Lighting最受争议的一点应属在shading pass需要再次渲染几何体了。如果物体很多,尤其是有tessellation和GS的,多渲一遍有可能抵消了lighting pass带来的性能提升。改进的方法之一就是在建立G-Buffer阶段,用类似Deferred Shading的fat G-Buffer。除了原先的一张纹理,还需要一张纹理用来存放diffuse信息。但是lighting pass和原来一样,不涉及diffuse。shading pass就变成画一个全屏四边形,从G-Buffer的第二章纹理读取diffuse,进行着色。甚至emit也这么处理。这种方法介于Deferred Shading和Deferred Lighting之间。
彩色的specular
在前文提到过,为了把lighting pass中的diffuse和specular都塞到4个通道里,就只能舍弃specular的颜色,只保存亮度。如果要RGB三个通道的specular,近似的方法是通过diffuse积累结果的颜色来计算specular的颜色。这是个很粗糙的近似,虽然不是正确的,不过能骗骗眼睛:
其中lumspec是累积出来的specular亮度,lumdiff是用累积出来的diffuse颜色计算出的亮度。epsilon是为了避免lumdiff为零。 另一种方法是lighting pass用6个通道。但是如果每个通道都是float 16的,也就是96bpp,带宽开销非常大,就不合适了。我的一个想法是把diffuse和specular都转换到YUV空间。这个空间的一个好处是Y 是float 16的,U和V都只要8 bit就可以了。所以可以这么安排MRT:第一张texture格式为G16R16F,保存diffuse和specular的Y;第二张texture 格式为ABGR8,分别保存两者的U和V。这样只有64bpp,但能保存正确的彩色diffuse和specular。由于YUV格式也是可以相加的,这个地方仍可以用原先的lighting pass积累方法。
inferred lighting
Lighting pass可以借用inferred lighting的核心思想来加速。也就是说,lighting pass不需要全尺寸,只需要在一个比较小的render target上执行即可(比如3/4大小)。G-Buffer仍是全尺寸的,并在G-Buffer生成后作一次边缘检测。Shading pass也是全尺寸的,在采样lighting pass texture的时候,利用边缘检测的结果进行保边缘的插值(一般称为Discontinuity Sensitive Filtering,DSF),得到全尺寸lighting的近似。
上图是使用了800×450的lighting直接拉伸到1280×720做shading的结果,关闭DSF,锯齿严重。下图打开了DSF,基本解决了锯齿问题。
Anti-alias
前面文章讲了很多AA的方法,但那些都是在空间上做AA,比较适合近处物体。对于远处物体来说,空间上AA得到的收益有限,必须在时间上进行AA。结合上MLAA的威力,应该能有很小的代价实现很接近16xMSAA的结果。
各向异性BRDF
Crytek的“CryENGINE 3: Reaching the speed of light”里提到了在Deferred Lighting框架下加入各向异性BRDF的方法。它用了Spherical Gaussian(SG)来近似出NDF(来自于SIGGRAPH Asia 2009的All-Frequency Rendering of Dynamic, Spatially-Varying Reflectance),但这个SG只是per-object的。在G-Buffer阶段,不保存normal,而保存SG展开成lobe的系数。而 BRDF的其他几个项,Fresnel term、Geometry term,都留到shading pass才计算。这种方法的好处是,对lighting pass来说一切都是透明的,它照样可以按原来的方法累积光照,因为Microfacet BRDF中除了NDF,其他都作为公因数提取出去了(Microfacet BRDF的详细讲解可以参见“基于物理的BRDF”)。实际上,Fresnel term的系数是l和h,必须在lighting pass做。这里相信Crytek是用了n和v来代替,这样不是物理正确的,只有在高光的中心点,dot(l, h)才等于dot(n, v),其他地方dot(n, v)会更迅速地衰减,到边缘地方就非常明显了。如果不在乎这个,是可以把NDF都用SG来表示,并用统一的方法进行渲染。
保存lobe的G-Buffer是这个样子的:
各向异性BRDF渲染出来的结果:
KlayGE 4.0中的改进
在KlayGE 4.0中,延迟渲染进入了渲染系统的核心,可以作为更通用更方便的一个渲染封装来使用。
在功能上,KlayGE 4.0中的延迟渲染也有了长足的进步。下文将着重于解析这些新改进。
流水线
先来看看延迟渲染的流水线。
在流水线方面,第一个比较大的变化是,G-Buffer改成了MRT的,用类似Deferred Shading的fat G-Buffer来避免在shading pass再次渲染一遍物体。新G-Buffer的布局将在下文分解。在shading pass阶段,只需要渲染一个全屏quad,在每个pixel上把材质和光照信息结合就可以了。
其次,G-Buffer内已经没有Depth的通道,直接使用D24S8格式的texture来保存depth。这样就需要做一个depth线性化的步骤,把24-bit非线性的depth转到32-bit float的纹理上,方便后面使用。线性化的方法为:
其中far为远平面,near为近平面。这样一来,就能省出一个通道,同时depth的精度也提高了。对于D3D9,也可以用扩展格式来实现D24S8纹理。
第三个改进是,规范化了stencil的使用。如果stencil的最高位为1,就表示那个pixel不会在lighting pass中计算光照。这样就可以挡掉一些不希望接受光照的特殊物体。
另外,在shading pass之后增加一个special shading pass。标记有special shading属性的物体会在这个阶段再画一次。special shading的本意是渲染带emit的物体,其实可以和stencil mask配合,在这里作任何想做的forward shading效果。透明物体的alpha也可以在special shading中给出,请看后文关于透明物体的渲染一段。
新的延迟渲染流水线从G-Buffer上看,像Deferred Shading,而之后的阶段则更像Deferred Lighting。可以算作是两者的结合。
G-Buffer布局
前面提到了G-Buffer改成了MRT,那么现在就来比较一下新老G-Buffer的区别。老G-Buffer的安排如下:
老G-Buffer是4个通道、每个通道都是fp16的RGBA16F格式。其中normal用Spheremap Transform的方式映射到2个通道;depth单独存一个通道;specular和shininess挤在一个通道内,整数部分为specular * 100,小数部分为shininess / 256.0f。
这样的G-Buffer需要占据64-bit,IO开销不小,而且depth精度有限。如果按照新的MRT G-Buffer扩展到2个RT,就需要再增加一个32-bit的RT。对于不支持Independent MRT的D3D9硬件来说,甚至要增加一个64-bit的RT,会很影响性能。
最直接的改进就是把depth去掉,同时把specular和shininess分散到两个通道去,就像这样:
这么一来,所有的分量都可以存在8-bit之内,2个RT仍用64-bit就能解决,并且空闲了一个通道!但是,由于normal的位数下降了非常多(从原来32-bit变成16-bit),效果也会受到很大影响。例如,原先(2个16-bit通道)的高光是这个样子的:
改用2个8-bit通道就出现了很明显而且丑陋的梯度:
所以说2个8-bit通道没有能力表现出光滑的normal过渡,得把剩余的一个通道用上才行。但需要注意的是,和传统Deferred Shading的G-Buffer不同在于,这种MRT G-Buffer的每个lighting pass只需要读取一次RT0,到了shading pass才读一次RT1。如果把lighting pass需要的信息放到了RT1,就会造成lighting pass的IO加倍,失去Deferred Lighting的有效加速。
因此,我只能作出一个艰难的决定:放弃基于物理的fresnel。原先把specular放在RT0的目的就是,在lighting pass可以用它来计算fresnel:
基于物理的fresnel需要specular颜色(这里简化成只有亮度了)、light方向和halfway方向,必须在lighting pass计算。最常见的近似是用view和normal来代替light和halfway,这样就可以在shading pass才计算fresnel,而且对于所有角度的光源产生的fresnel系数都相同。实际上,这个近似只有在高光的那一个点的地方是相同的,越往边缘去会越暗。但因为fresnel本身比较弱,这个差异可以被直接忽略。因为通道实在不够,在KlayGE 4.0中,我也不得不采用这个近似的、不基于物理的fresnel,得到新的G-Buffer布局如下:
specular被挪到了RT1的A通道,RT0的RGB通道就能都用来存放normal了。那么,在24-bit normal下渲染结果又如何呢?
可以看到,效果比只用16-bit好了许多,但离32-bit的情况还是很有差距的。至少一眼就能看出来梯度的现象。在SIGGRAPH 2010上,Crytek有个讲座叫CryENGINE 3: reaching the speed of light。里面提到了出现这个现象的根本原因在于:normal是被normalize过的!24-bit一共能表达256x256x256 = 16777216个不同的值,但如果仅限于normalizied的,就剩下了大概289880个,仅占了1.73 %。它有效的位数只有17-bit,所以梯度的格子仅比16-bit的时候密了一倍。Crytek的best fit for normals方法能表达16482364个值,也就是98.2 %,提升了几乎两个数量级。用best fit调整过的normal平滑的多了:
已经看不出和32-bit normal的区别了。关于best fit for normals的具体方法,可以参考Crytek的ppt。这里提供了一个我的程序预计算出来的纹理,用来查询最佳长度。
和Crytek的方法不同的是,我省掉了它所说的y/x变换,所以从normal计算纹理坐标的时候也得去掉vTexCoord.y /= vTexCoord.x一行。
透明物体
游戏中透明物体是不可缺少的,对于延迟渲染来说,透明物体一直是痛苦的。常见的做法是在延迟渲染的场景之上用forward shading来单独渲染透明物体,但那样就意味着必须单独实现一整套forward shading的流水线。这对于维护和扩展都是很不利的,对性能也很有影响。
在KlayGE 4.0里,我用的方法被称为Deep G-Buffer。其基本过程是,把前文篇所描述的延迟渲染流水线复制三份,不透明的物体、透明物体的背面、透明物体的正面分别有自己独立的G-Buffer、lighting pass、shading pass和special shading pass。最后会生成三张shading的结果,再把它们按照alpha混合起来就可以了。
首先建立的是不透明物体的G-Buffer,跟原先一样:
细致的朋友可以发现,由于用了best fit for normals,G-Buffer里的normal看上去很有趣。
然后用把cull设置为front,只画透明物体的背面,存在第二个G-Buffer中。这里还需要用类似depth peeling的方法clip掉比不透明物体更远的pixel。因为不透明物体挡住了绝大部分pixel,透明物体的背面只剩下很少一部分:
同样,我们可以在第三个G-Buffer存透明物体的正面:
经过lighting pass、shading pass和special shading pass,就得到了不透明物体的shading:
透明物体背面的shading,几乎没有被照亮的:
以及透明物体正面的shading:
注意透明物体都会在special shading pass给出像素alpha值。接下来只要把它们混合起来,就可以得到我们想要的结果:
再来一张侧面图,可以看到由于光照方式一样,透明物体和不透明物体的光照能连续平滑地过渡。
这一节抛砖引玉地提出了在Deferred框架下渲染透明物体的一个方法,它能简单有效地解决问题。缺点是三倍的内存和带宽消耗。如果depth peeling的层数增加,内存和带宽的消耗还会增加。这里其实也可以借鉴其他order independent transparency的方法,来取代depth peeling分离G-Buffer。
实时全动态GI
目前direct lighting在游戏中日趋成熟,比较前卫的游戏引擎已经不满足于direct lighting的效果了,逐渐开始尝试indirect lighting。早期的方法有通过离线渲染light map来实现静态场景、静态光源的GI。接着出现了PRT,可以处理静态场景、动态光源。CE3用了Light Propagation Volumes的方法,不需要预计算,可以产生动态场景、动态光源的diffuse GI。不过其速度和质量确实不敢恭维。难道就不能有全动态场景、全动态光源、diffuse和specular通吃的实时GI方法吗?有!Multiresolution splatting for indirect illumination(MRSII)前来救驾。
在KlayGE 3.12中,团队成员atyuwen就已经实现了MRSII。经过半年多的改进,这种GI方法已经融入了新的Deferred Rendering框架中,并且性能也得到了很大的提升。下面就让我们来看看这种神奇的GI。
MRSII的渲染流程如下(感谢vanish整理了此流程图):
首先,G-Buffer需要做mipmap,接着在每一层检测深度和法线的间断点,把那些间断点在stencil buffer中标记出来,得到了这样的stencil buffer:
和之前的stencil规则一样,最高位是1表示忽略。所以灰色的pixel是可以忽略掉的,黑色的是需要计算光照的。可以看出黑色所占的面积并不大,绝大部分pixel都被略过了。
另外,还需要生成一个Reflective shadow map。和shadow map类似,RSM也是从光源视角渲染一遍场景。除了深度以外,RSM还需要保存normal和flux信息。把RSM采样出一些点,比如256个,作为虚拟点光源(VPL)。目前KlayGE里面用的是均匀采样的方式,以后将改成importance sampling的方式提高VPL分布效率。
最后,每个VPL都可以根据BRDF生成一个light volume。用这些light volume去照亮G-Buffer的每一层。初始的light volume是个半球,在它的vertex阶段会根据各方向反射的亮度拉出某些顶点,生成一个奇怪形状的light volume。这个阶段因为涉及到大量的填充和计算,非常耗时,但因为stencil test是打开的,绝大部分pixel都会被挡掉,真正参与计算的pixel数远远少于G-Buffer的总pixel数,GI因此得到明显的加速。经过测试,在目前的场景下,如果只用一层G-Buffer(也就是不用multiresolution),速度只有用三层的一半。如果大于三层,速度已经没有提高了。所以默认就选了三层G-Buffer。
在生成每一层的indirect lighting结果之后,还需要做一个特殊的插值upsampling,才能得到光滑的结果。这个插值在MRSII的原paper中有描述,这里就不累赘了。
如果只是用一般的最近点插值或者双线插值,结果会有很多悲催的锯齿:
最后,把indirect lighting加到direct lighting中,继续做下一步的shading pass。最终结果如下:
比较只有direct lighting的结果,可以看到右边和地面被照亮了:
用了MRSII后,对于512×512的RSM、256个VPL、三层G-Buffer的情况下,GI在GTX480上只需要1.09ms、在9800GT上需要4.3ms。目前还有不少性能空间可以挖掘,我预计在同质量的情况下,最终能达到在GTX480上0.5ms、9800GT上2.5ms的速度。
这套GI的框架不但可以做这样的反射型indirect lighting,也可以做caustics这样的高频反光,也可以处理sub-surface scattering等材质效果。在KlayGE以后的版本中,MRSII将会得到持续的发展。
Post process
在KlayGE 4.0的延迟渲染中,post process主要有HDR、AA和color grading。下面将分别讲述它们的改进。
HDR
在KlayGE 3.12用了filmic tonemapping之后,HDR部分就几乎没有别的改变。这里唯一的变化是最终输出的float4,把亮度存在A通道上。这是为了后面FXAA的需要。
AA
在Deferred框架中,无法使用硬件AA曾经是个恼人的问题。随着这些年各种基于post process的AA方法大量出现,Deferred下AA的问题基本被解决了。
团队成员陈顺斌和郭鹏曾为KlayGE 3.12提供了FXAA。在新版本中,FXAA也升级到了最新的3.11版。从FXAA 3开始,就要求输入纹理是LDR的RGBL格式(L为亮度),所以计算AA的地点也就从HDR之前改到了HDR之后。虽然FXAA 3.11可以用G通道代替L,但效果肯定会受影响。既然让HDR post process输出RGBL轻而易举,我就没有把L改成G。FXAA极快,目前的实现在GTX480上可以达到0.1ms的惊人速度。几乎做到了无性能损失的高质量AA。
Color grading
Color grading是这个版本新增的。以前游戏一般不太重视color grading的作用,但在电影业,color grading是流水线非常重要的一步(可以和skinning相提并论的)。这里我实现的color grading是用16x16x16的3D texture作为查找表,用原RGB作为地址去查询,查询出的结果即为调色后的颜色(来自GPU Gems 2: Chapter 24. Using Lookup Tables to Accelerate Color Transformations)。除了runtime的post process之外,还需要一个离线工具,用来生成那个3D texture。这里我用的方法类似CE3,先生成一个摊平的256×16的2D texture:
在photoshop里打开一张游戏截图,调整RGB曲线至需要的色调,然后把那个RGB曲线应用到之前生成的2D texture,最终打包成3D texture就得到了我们所需要的查找表。以后可能会根据需要做一个在线调整color grading的工具。 总结
本系列文章把KlayGE 4.0中延迟渲染的改进逐一介绍了一下,希望能对也在做类似事情的朋友有所帮助。在总结里我也身边展望一下未来,看看在KlayGE 4.1中,延迟渲染部分还会可能出现什么改进。
- 更高的速度。Multiresolution的方法在GI中获得了成功,也许也可以扩展到direct lighting和SSVO中,用于加速整个延迟渲染。
- 改进HDR中的bloom filter。学习3DMark11,用FFT的方式在一个pass内完成bloom、lens flare等特效。
- 支持移动平台。精简的Deferred Rendering流水线将会以至到移动平台上。
- 更多例子用延迟渲染实现。目前只有3个例子用到了deferred框架,其他还是forward的。以后会有越来越多的例子转到deferred中。