
Practical Implementation of Dual Parabloid Shadow Maps

Brian Osman∗

Vicarious Visions
Activision

Mike Bukowski†

Vicarious Visions
Activision

Chris McEvoy‡

Vicarious Visions
Activision

Abstract

In this paper, we present refinements to dual paraboloid shadow
mapping algorithm from Brabec, et. al. This work makes the al-
gorithm practical for broader use in video games. We give solu-
tions for the tessellation constraints on shadow casters and receivers
present in the original work. We also discuss heuristics for splitting
plane placement and pitfalls in filtering.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: dual paraboloid, shadow mapping, video games

1 Introduction

In real time rendering applications, e.g. video games, one of the
common algorithms used for rendering shadows is shadow map-
ping [Williams 1978]. The traditional shadow mapping algorithm
consists of two passes. First, the scene is rendered from the light’s
point of view. The depth values from this render are stored in a
texture called a shadow map. This must be done for each light in
the scene. In the second pass, the scene is rendered again from the
camera’s point of view. During this render, each pixel is checked to
see if it is obscured, i.e. in shadow. This is done by looking up the
depth value for the given pixel in the shadow map generated in the
first pass. If the value from the shadow map is less than the actual
depth value of the pixel, it is in shadow. For each light, a shadow
map comparison must be made.

∗e-mail: osman@vvisions.com
†e-mail: mbukowski@vvisions.com
‡e-mail: chris@vvisions.com

Because the scene must be stored in a single texture, the traditional
shadow mapping algorithm can only be used for lights with a lim-
ited field of view. This makes the traditional approach suitable
for spotlights but impossible for lights with a greater field of view.
Shadowing hemispherical lights and point lights requires a differ-
ent approach. Two shadow mapping techniques for such lights are
cube shadow maps and dual paraboloid shadow maps.

Cube shadow maps are a simple extension of the traditional shadow
mapping technique. The scene is rendered six times from the posi-
tion of the point light. Each render is then stored as a face in a cube
map. The full 360 degree field of view is accurately accounted for.
During the lighting pass, cube map lookup functions are used to
sample depth values from the cube shadow map. This approach
will result in very accurate shadows for point lights, but can re-
sult in poor performance due to the number of render passes. Cube
shadow mapping performance can be improved by only rendering
faces in the shadow map that will actually be needed for lookup
[King and Newhall 2005]. Even with performance optimizations,
the scene will need to be rendered many times per light.

Dual paraboloid shadow mapping, DPSM, is another extension of
the traditional shadow mapping technique [Brabec et al. 2002].
DPSM is based on view-independent environment mapping [Hei-
drich and Seidel 1998]. When using DPSM, the scene is rendered
once for each 180 degree field of view. This means only one shadow
render is needed for hemispherical lights. Point lights require a ren-
der for each of its hemispheres. When the shadow maps are put
back to back, a full 360 degree field of view can be represented.
During shadow render each vertex of the object is transformed into
paraboloid space and stored in the depth texture as such. The re-
sulting depth texture is a paraboloid representation of the scene.
During the scene render, texture coordinates must be generated for
the paraboloid shadow map. Once the depth has been obtained from
the paraboloid shadow map, the traditional shadow mapping com-
parisons can be made.

The ability to render a full 360 degree field of view in only two ren-
der passes does come with drawbacks. With the traditional DPSM
implementation, both shadow casting and shadow receiving geom-
etry needs to be sufficiently tessellated. It will be shown later that
a simple modification to the standard implementation can eliminate
the need for tessellation on shadow receivers. Tessellation is needed
due to the fact that each vertex must be transformed into paraboloid
space. If polygons are large with respect to the light, severe distor-



Figure 1: Front and back hemispheres of a dual-paraboloid shadow
map.

tion or bending of shadows can occur. This is the result of linearly
interpolating non-linear vertex data. If the geometry is sufficiently
tessellated, the error due to interpolation is manageable.

On the surface, DPSM may seem infeasible due to the tessellation
restriction. In reality DPSM can be a very effective method for
implementing real-time shadows. It will be shown that many of the
problems associated with DPSM can be mitigated if care is taken
when constructing a real-time lighting architecture.

2 Paraboloid Transform in the Pixel Shader

The core problem with DPSM that necessitates tessellated geome-
try is the non-linear space. Because the GPU performs linear inter-
polation during rasterization, any values that lie in paraboloid space
are not interpolated correctly. When generating the shadow map,
there is little that can be done to avoid this, on hardware where the
interpolation method is fixed. However, we can solve the problem
during the lighting pass.

Figure 2: Wireframe image of low polygon test scene.

The standard approach to DPSM suggests always doing the
paraboloid transform in the vertex shader. This causes texture co-
ordinates (in paraboloid space) to be interpolated linearly, giving
incorrect results, as seen in figure 3. Our approach is to instead
send the world-space position of the vertex in question. With this
approach, the hardware’s linear interpolation gives us the world-
space location of the pixel to be shaded, and the interpolation is
correct. Then, we transform the position into the light’s paraboloid
space for each pixel. This gives us correct shadow lookup, even
when the shadow receiving geometry has very few polygons. The
improvement can be seen in figure 4.

Effectively, by shifting some of the work from the vertex shader
to the pixel shader, we have eliminated the tessellation require-
ment from shadow receivers. Although shadow casters must still
be tessellated, we can project shadows on large environmental ge-
ometry (floors and walls) without excessive polygon counts. In a

Figure 3: Incorrect shadows from vertex shader transformation.

constrained environment, this can remove much of the tessellation
restriction imposed by traditional DPSM. If many of the shadow
casters are smaller or more tessellated, like character models, then
high quality shadows can be achieved.

Figure 4: Improved shadows from pixel shader transformation.

3 Hardware Tessellation

We have already demonstrated a simple and reasonable solution to
DPSM’s tessellation requirements on shadow receivers. In some
cases, this will be sufficient to make the technique usable in real-
world scenarios. In other cases, though, we will have shadow cast-
ers that are not sufficiently tessellated. Figure 5 shows a low poly-
gon caster very close to the light. To combat this problem, we turn
to a feature of many modern GPUs: hardware tessellation. Some
GPUs now support automatic tessellation of input primitives using
a variety of algorithms [Vlachos et al. 2001]. The feature is pri-
marily intended for techniques like displacement mapping, or other
vertex shaders that create sub-polygon detail in the final rasteriza-
tion. It also suits our needs, though, by simply shrinking the final
triangles. Most importantly, it enables us to render correct dual-
paraboloid shadow maps, even when some of our casters would
otherwise lack sufficient tessellation.

It is important to note that the tessellation requirement is not static.
The amount of tessellation a shadow casting object requires is deter-
mined by its distance from the light. The actual restriction is on the
size of each rasterized triangle within the shadow map. This knowl-
edge, combined with the hardware tessellation controls of modern
GPUs, enables us to automatically tessellate only those objects that
require it. As a pre-process, it is easy to determine the area of the
largest triangle in each mesh. During shadow render, we can ad-
just the hardware tessellation parameters to ensure that no rendered
triangle exceeds a given size, based on the object’s distance to the
light. Figure 6 shows a tessellated caster near the light, and the
resultant improvement in shadow quality.



Figure 5: Incorrect shadows from low polygon caster.

Figure 6: Using a (hardware) tessellated caster creates correct shad-
ows.

4 Splitting Plane Choice

Every problem unique to DPSM is a result of the warped paraboloid
space, and its interference with linear operations performed dur-
ing rasterization and interpolation. Examining a paraboloid shadow
map, it is apparent that this causes the most distortion at the perime-
ter of the valid region, along the plane that divides the two hemi-
spheres of the light. Pixels that fall in the center of either hemi-
sphere suffer little distortion, and generally yield high quality shad-
ows. As an example, the light’s splitting plane in figure 5 runs
directly through the caster. This contributes to the severe shadow
errors. Choosing a splitting plane parallel to the ground would have
been a better choice in this scene.

Previous work on DPSM implicitly divided the world along the
world-space z-plane. This isn’t required and choosing a different
splitting plane can help to eliminate artifacts. Modifying the split-
ting plane is accomplished by simply assigning a full camera ma-
trix to the light (as is done with traditional frustum based spotlight
shadow mapping). The rotation of the light’s camera also rotates the
splitting plane, which will always be the camera plane that passes
through the light’s position.

Remember that any shadow caster geometry that falls on both sides
of the splitting plane will need to be rendered twice, once for each
shadow map. Thus, by carefully choosing the splitting plane, we
can limit artifacts, and we can also affect performance. Depend-
ing on scene construction, various axis-aligned orientations of the
splitting plane may interesect more or less geometry. Orienting
the plane so that the artifacts fall outside the camera frustum, or
in areas where the user is less likely to notice artifacts, can also
be very beneficial. Of course, it may not be possible to achieve
both goals simultaneously. Nevertheless, careful orientation of the
light’s hemispheres is a valuable tool when using DPSM.

5 Filtering

Aliasing along the edges of shadows are a common problem in
many shadow mapping implementations. A large amount of work

has been done exploring how to limit these artifacts [Chan and Du-
rand 2003]. Many techniques involve alternative projections or
spaces to use more shadow map texels in areas of interest [Stam-
minger and Drettakis 2002]. These approaches are unsuitable to
DPSM, because of the special (fixed) projection required.

The other primary method of reducing aliasing involves filtering of
the shadow map during the lighting pass. Percentage closer filter-
ing, PCM, is often used [Reeves et al. 1987]. PCM is often im-
plemented in hardware during the texel lookup [Brabec and Sei-
del 2001]. More complex filtering is often performed in the pixel
shader, using multiple texture samples and large filter kernels. This
type of filtering works to a limited extent with DPSM, but causes
nearly as many problems as it solves.

Figure 7: Normal (exaggerated) filter kernel applied to DPSM.

Because normal texture filtering is done in image space, the fil-
ter kernel samples a rectangular region of the shadow map (see
figure 7). Near the center of the map, this is essentially correct.
However, as the pixel being shaded gets closer to the edge of the
paraboloid, the filtering becomes less accurate. In the worst case,
filtering can cause samples to be read from outside the valid re-
gion of the shadow map when the shaded pixel is on or very near
the perimeter of valid region. In world space, these samples corre-
spond to the splitting plane that divides the two hemispheres of the
light. This plane is often the source of artifacts with DPSM. Unfor-
tunately, using aggressive filtering will often improve the quality of
shadows near the center of the map, but degrade the shadows along
the spliting plane.

Figure 8: DPSM-aware (exaggerated) filter kernel.



As future work, consider a DPSM-aware filtering method. At the
cost of more pixel shader instructions, correct filtering could be per-
formed with a dual-paraboloid shadow map by applying the filter
kernel before the conversion to paraboloid space. Each adjusted
sample would then be transformed into paraboloid space indepen-
dently. This would cause the samples generated by the filtering to
be correctly warped into paraboloid space, as illustrated in figure 8.
Using this scheme, pixels along the splitting plane would fetch and
average texels from both hemispheres of the shadow map.

6 Conclusion

We have presented improvements to the original DPSM algorithm
that permit using the technique in a wider variety of settings. We
have demonstrated how transferring work to the pixel shader can
eliminate the need for tessellation of shadow receivers. Simulta-
neously, hardware tessellation and clever choice of splitting planes
can address the need for tessellation of shadow casters. Most of
these techniques are driven by advances in graphics hardware tech-
nology since the original DPSM paper was published. We have
also suggested a possible further refinement to filtering of dual-
paraboloid shadow maps. These improvements make the techique
practically usable for real-time applications under some constraints.

We have integrated our implementation of DPSM into an existing
game engine using the Microsoft Xbox 360 Game Console. The
implementation supports four simultaneous shadow casting point
lights. The engine uses the Xbox 360’s hardware tesselator to tes-
sellate caster geometry. The splitting plane can be aligned to the
camera view to reduce artifacts. Rendering a typical in game scene,
about 50,000 polygons, with game systems active, we observed a
solid 30 frames per second.

7 Acknowledgements

We wish to thank Gil Gribb of Raven Software for originally sug-
gesting that we investigate DPSM.

References

BRABEC, S., AND SEIDEL, H.-P. 2001. Hardware-accelerated
rendering of antialiased shadows with shadow maps.Computer
Graphics International, 209.

BRABEC, S., ANNEN, T., AND SEIDEL, H.-P. 2002. Shadow
mapping for hemispherical and omnidirectional light sources. In
Computer Graphics International.

CHAN , E., AND DURAND, F. 2003. Rendering fake soft shadows
with smoothies. InEGRW ’03: Proceedings of the 14th Eu-
rographics workshop on Rendering, Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, 208–218.

HEIDRICH, W., AND SEIDEL, H.-P. 1998. View-independent en-
vironment maps. InHWWS ’98: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware,
ACM Press, New York, NY, USA, 39–ff.

K ING, G., AND NEWHALL , W. 2005. Efficient omnidirectional
shadow maps. InShaderX3: Advanced Rendering with DirectX
and OpenGL, Charles River Media, Hingham, MA, USA, 435–
448.

REEVES, W. T., SALESIN, D. H., AND COOK, R. L. 1987. Ren-
dering antialiased shadows with depth maps. InSIGGRAPH ’87:
Proceedings of the 14th annual conference on Computer graph-
ics and interactive techniques, ACM Press, New York, NY, USA,
283–291.

STAMMINGER , M., AND DRETTAKIS, G. 2002. Perspective
shadow maps. InProceedings of ACM SIGGRAPH 2002, ACM
Press/ ACM SIGGRAPH, J. Hughes, Ed.

VLACHOS, A., PETERS, J., BOYD, C., AND M ITCHELL , J. L.
2001. Curved pn triangles. InSI3D ’01: Proceedings of the
2001 symposium on Interactive 3D graphics, ACM Press, New
York, NY, USA, 159–166.

WILLIAMS , L. 1978. Casting curved shadows on curved surfaces.
In SIGGRAPH ’78: Proceedings of the 5th annual conference
on Computer graphics and interactive techniques, ACM Press,
New York, NY, USA, 270–274.


